Например, можно попробовать создать ИИ, который функционировал бы как устройство с вопросно-ответной системой, то есть выступал бы в роли «оракула» (термин, который мы введем в следующей главе). Однако было бы небезопасно наделять ИИ подобной конечной целью: выдавать максимально точные ответы на любой заданный вопрос — вспомним описанный в восьмой главе сюжет «Гипотеза Римана и последующая катастрофа». (Правда, такая цель стимулировала бы ИИ предпринимать действия, гарантирующие ему, что вопросы будут простыми.) Нам понадобится преодолеть эти трудности. Поэтому следует очень внимательно отнестись к самой процедуре приручения ИИ и попытаться корректно определить конечную цель, стимулируя ИИ проявлять добрую волю отвечать на вопросы безошибочно и сводить к минимуму свое воздействие на мир. Правда, последнее не имеет отношения к тем случаям, когда формулировка вопросов невольно вынуждает ИИ давать ответы, оказывающие влияние на окружающих, но все равно эти ответы обязаны быть абсолютно достоверными, а форма их изложения не должна манипулировать сознанием людей.
Мы видели, насколько неудобно пользоваться точной спецификацией, когда речь идет об амбициозной конечной цели — к тому же отягощенной сложной системой правил, которые предписывают ИИ, как ему действовать в практически открытом множестве ситуаций. Было бы намного полезнее применять метод точной спецификации для столь узкой задачи, как приручение ИИ. Но даже в этом случае остается масса проблем. Следует проявлять большую осторожность, составляя определение системы поведения ИИ. Например, как он собирается «сводить к минимуму свое воздействие на мир»? Необходимо убедиться, что он будет соблюдать все условия и его критерии не отличаются от наших стандартов. Неправильно выбранная им величина степени воздействия может привести к плачевным результатам. Существуют и другие опасности, связанные с созданием системы «оракул», но их мы обсудим позже.
Метод приручения ИИ естественным образом перекликается с методом его изоляции. Предположим, мы блокировали ИИ таким образом, что он не в состоянии вырваться на свободу, но есть смысл попытаться сформировать у него такую систему мотивации, что даже когда появится возможность побега, у ИИ не возникнет желания покидать свою «песочницу». Правда, если одновременно с этими мерами подключить «растяжки» и множество других предохранительных устройств, шансы на успех приручения резко упадут.
Если в каких-то случаях методы точной спецификации окажутся безнадежным делом, можно было бы попробовать метод косвенной нормативности. Основная идея этого подхода очень проста. Вместо того чтобы изо всех сил пытаться дать точнейшее определение конкретных стандартов и нормативов, мы разрабатываем схему процесса их получения. Затем создаем систему, которая была бы мотивирована выполнить этот процесс и принять полученные в результате стандарты и нормативы. Например, процесс мог бы заключаться в поиске ответа на эмпирический вопрос, какие предпочтительные действия ожидала бы от ИИ некая идеализированная версия человека, предположим, нас самих. Конечной целью ИИ в таком случае стала бы какая-нибудь версия вроде «делать то, что мы могли бы пожелать, чтобы делал ИИ, если бы долго и упорно размышляли об этом».
Дальнейшее объяснения метода косвенной нормативности мы продолжим в тринадцатой главе. В ней мы вернемся к идее экстраполяции нашего волеизъявления и изучим альтернативные варианты. Косвенная нормативность — очень важный подход в системе методов выбора мотивации. Он позволяет нам большую часть тяжелейшей работы, которую нужно выполнять при точной спецификации конечной цели, перенаправить самому сверхразуму.
Последний метод выбора мотивации в нашем списке — приумножение. В его основе лежит следующая идея: вместо того чтобы формировать с чистого листа систему мотивации у ИИ, мы обращаемся к интеллектуальному агенту с уже сложившимися и подходящими нам мотивами поведения. Затем мы расширим когнитивные способности агента до уровня сверхразумных. Если все пойдет хорошо, то метод даст нам сверхразум с приемлемой системой мотивации.
Очевидно, что такой подход нельзя применять в случае создания зародыша ИИ. Но приумножение вполне реально использовать, когда к сверхразумному уровню идут другими путями: при помощи полной эмуляции головного мозга, биологического улучшения интеллектуальных способностей, создания нейрокомпьютерного интерфейса или развития сетей и организаций — когда есть возможность построить систему на основе нормативного ядра (обычных людей), которое уже содержит представление о человеческих ценностях.
Привлекательность метода приумножения может расти прямо пропорционально нашему разочарованию в других подходах к решению проблемы контроля. Создание системы мотивации для зародыша ИИ, которая осталась бы относительно надежной и приносила бы пользу в результате рекурсивного самосовершенствования даже после того, как ИИ превратится в зрелый сверхразум, — дело крайне сложное, особенно если нужно получить верное решение с первой попытки. В случае приумножения мы могли бы как минимум начать с агента, который уже имеет знакомую и схожую с человеческой систему мотивации.
Однако трудно обеспечить сохранность такой сложной, развитой, не идеальной и плохо понимаемой нами самими системы мотивации, такой как человеческая, после взлета ее когнитивного ракетоносителя в стратосферу. Мы уже обсуждали, что в результате несовершенной эмуляции мозга может сохраниться функционирование его интеллекта, но будут утеряны некоторые черты личности. То же самое (хотя, возможно, и в меньшей степени) верно в случае биологического улучшения интеллектуальных способностей, способного в какой-то мере затронуть мотивацию, а также для коллективного улучшения сетей и организаций — фактора, серьезно меняющего социальную динамику (например, будет пересмотрено отношение или к внешним, или внутренним субъектам). Если сверхразум возник в результате движения по одному из этих путей, организатор проекта может столкнуться с тем, что конечная мотивация зрелой системы окажется для него недоступной. Благодаря изяществу и математически четкой определенности архитектуры ИИ — при всей ее неантропоморфной инаковости — она гораздо прозрачнее, несмотря на то что важные аспекты ее функционирования не поддаются формальной проверке.