Рассмотрим прямо противоположный вариант. Допустим, есть ИИ, имеющий более скромную конечную цель, которой можно достичь с помощью малых ресурсов, скажем, получить определенную порцию заранее подготовленных зашифрованных наградных знаков или создать сорок пять виртуальных скрепок. Такому ИИ не следует преуменьшать значение своего имитационного мира. Поэтому на процесс принятия решений ИИ, чьи цели «ресурсоудовлетворяемые», оказывают большое влияние соображения, какие действия приведут к лучшему результату, если воспринимаемый им мир представляет собой имитацию. И он присваивает высокую вероятность гипотезе о симуляции. Такой ИИ (даже если он обитает в реальном, а не имитационном мире) может значительно корректировать свои действия в соответствии с представлениями о том, какое поведение в условиях симуляции будет скорее вознаграждено.
В частности, если ИИ с «ресурсоудовлетворяемыми» конечными целями убежден, что в большинстве имитационных миров, которые отвечают его потребностям, он будет вознагражден за готовность сотрудничать (а не за попытки прорвать блокаду или пойти против интересов принципала), то он может сделать выбор в пользу сотрудничества. Более того, если ровно в такой ситуации окажется сверхразум, обладающий решающим стратегическим преимуществом и способный более полно реализовать конечные цели, установив свою власть над миром, — он тоже выберет сотрудничество, а не предательство.
Так всех нас в трусов превращает мысль
И вянет, как цветок, решимость наша
В бесплодье умственного тупика.
Так погибают замыслы с размахом,
Вначале обещавшие успех,
От долгих отлагательств.
Уильям Шекспир. Гамлет (акт 3, сцена 1)
Тончайшая линия на песке, оставленная подолом одежды несуществующего в реальном мире симулятора, может оказаться более надежной защитой, чем стальная дверь полуметровой толщины.
Еще один метод контроля над возможностями — ограничение интеллектуальных способностей системы или ее доступа к информации. Этого можно добиться, запустив ИИ на компьютере с низким быстродействием или недостаточной памятью. Интеллектуальная система, запертая в «песочнице», также имеет ограниченный доступ к информационным потокам.
Сознательная задержка в развитии ИИ может уменьшить степень его полезности. Таким образом, при использовании этого метода мы оказываемся перед дилеммой: бурное интеллектуальное развитие системы приводит к тому, что она находит способ стать сверхразумной (и захватить господство над миром), избыточная задержка в интеллектуальном развитии превращает систему в очередную бесполезную программу. ИИ, по отношению к которому применена процедура радикальной задержки развития, совершенно безопасен. Безусловно, он сам уже не в состоянии решить проблему направленного взрывного развития искусственного интеллекта, поэтому взрыв — только уже неуправляемый, вызванный какой-то другой силой, — может произойти позднее.
Почему бы не создать, по мнению многих, сверхразум, владеющий знаниями в одной узкой предметной области? Ведь так было бы намного безопаснее. Например, разработать ИИ без датчиков и снабдить его памятью, в которую заранее загружена информация, относящаяся только к нефтехимической отрасли или биохимии пептидов. Но когда этот ИИ достигнет уровня сверхразума — то есть по общему уровню своего интеллектуального развития он превзойдет человека, — подобное информационное ограничение уже не будет гарантировать безопасности.
На то есть несколько причин, которые мы сейчас рассмотрим. Во-первых, само представление об узости знаний, ограниченных какой-то определенной темой, довольно сомнительно. Любая информационная составляющая может, в принципе, относиться к любой теме — все зависит от образования, квалификации, опыта и системности мышления того, кто владеет информацией. Во-вторых, та или иная информация содержит не только данные, относящиеся к одной предметной области, но и множество побочных данных. Проницательный ум, анализирующий базу знаний, номинально имеющую отношение к биохимии пептидов, логически выводит для себя совокупность самых разных данных. Даже факт включения или отсутствия какой-либо информации о многом говорит ИИ, у него сразу формируется представление об общем состоянии современной науки: уровне методологии; инструментальной базе; технологии производства оборудования; типологии мышления человека; мировоззрении общества, в котором проводились данные исследования и вырабатывались необходимые методики. Вполне возможно, сверхразум сумеет вывести последовательный ряд умозаключений из, казалось бы, небольшой области знаний, оперируя материалом, который человек в силу недалекости своего ума воспринимает лишь как скудный набор сухих фактов. Даже не обладая никакой специальной базой знаний, достаточно совершенный ум в состоянии научиться многому, просто вникая в смысл информации и отбирая для себя оптимальные выводы, по ходу дела он занимается самоанализом, изучая особенности собственного «восприятия»: раскладывает по полочкам проектные решения, отраженные в исходном программном коде, и физические характеристики компоновки схем. Должно быть, сверхразум смог бы априорно определить природу нашего мироздания (комбинируя логический вывод с вероятностью, смещенной в пользу более простых миров и некоторых элементарных фактов, о существовании которых можно подразумевать, исходя из наличия самого ИИ как мыслящей системы). То есть в процессе изучения информации о биохимии пептидов сверхразум смог бы постичь естественные законы природы; видимо, он сразу примется вычислять априорную вероятность, перебирая возможные перспективы: какие планеты он сформирует; какого рода разумную жизнь там заведет; какие общества сложит; какие методы управления будет использовать и насколько эти методы могли бы быть уязвимы.