Искусственный интеллект. Этапы. Угрозы. Стратегии - Страница 6


К оглавлению

6

Но прежде чем обратить свой взор в будущее, было бы полезно коротко напомнить историю создания машинного интеллекта.


Путь надежды и отчаяния

Летом 1956 года в Дартмутском колледже собрались на двухмесячный семинар десять ученых, объединенных общим интересом к нейронным сетям, теории автоматов и исследованию интеллекта. Время проведения Дартмутского семинара обычно считают точкой отсчета новой области науки — изучения искусственного интеллекта. Большинство его участников позднее будут признаны основоположниками этого направления. Насколько оптимистично ученые глядели в будущее, говорит текст их обращения в Фонд Рокфеллера, собиравшийся финансировать мероприятие:

...

Нами предполагается провести семинар по исследованию искусственного интеллекта, который продлится два месяца и в котором примут участие десять ученых… Изучение вопроса будет опираться на предположение, что на сегодняшний день существует принципиальная возможность моделирования интеллекта, поскольку теперь мы в состоянии точно описать каждый аспект обучения машины и любые отличительные признаки умственной деятельности. Будет предпринята попытка определить пути, как разработать машину, способную использовать язык, формировать абстракции и концепции, решать задачи, сейчас доступные лишь человеческому уму, и саморазвиваться. Считаем, что добьемся существенного прогресса в решении отдельных указанных проблем, если тщательно отобранная группа специалистов получит возможность трудиться сообща в течение лета.

После эпохального события, отмеченного столь энергичным прологом, прошло шестьдесят лет, за которые исследования в области искусственного интеллекта преодолели нелегкий путь: от громогласного ажиотажа до падения интереса, от завышенных ожиданий к обманутым надеждам.

Первый период всеобщего воодушевления начался с Дартмутского семинара. Позднее его главный организатор Джон Маккарти описал это время как эпоху вполне успешного освоения в духе детского «смотри, мам, без рук могу!». В те далекие годы ученые выстраивали системы, целью которых было опровергнуть довольно часто звучавшие утверждения скептиков, будто машины «ни на что не способны». Чтобы парировать удар, исследователи искусственного интеллекта разрабатывали небольшие программы, которые выполняли действие Х в условном микромире (четко определенной ограниченной области, предназначенной для демонстрации упрощенной версии требуемого поведения), тем самым доказывая правильность концепции и показывая принципиальную возможность выполнения действия Х машинами. Одна из таких ранних систем, названная «Логик-теоретик» (Logical Theorist), смогла доказать большую часть теорем из второго тома «Оснований математики» (Principia Mathematica) Альфреда Уайтхеда и Бертрана Рассела; причем одно из доказательств оказалось изящнее оригинального. Тем самым ученые, продемонстрировав способность машины к дедукции и созданию логических построений, сумели развеять миф, будто она «мыслит лишь цифрами». За «Логик-теоретик» последовала программа «Универсальный решатель задач» (General Problem Solver, GPS), предназначенная решать, в принципе, любую формально определенную задачу. Были созданы системы, которые справлялись с такими проблемами, как: математические задачи университетских курсов первого года обучения; визуальные головоломки по выявлению геометрических аналогий, применяемые при проверке показателя интеллекта; простые вербальные задачи по алгебре. Робот «Трясучка» (Shakey) — названный так из-за вибрации во время работы — показал, что машина может продумывать и контролировать свою двигательную активность, когда логическое мышление совмещено с восприятием окружающей действительности. Программа ELIZA прекрасно имитировала поведение психотерапевта. В середине 1970-х годов программа SHRDLU продемонстрировала, как смоделированный робот в смоделированном мире спокойно манипулирует объемными геометрическими фигурами, не только выполняя инструкции пользователя, но и отвечая на его вопросы. В последующие десятилетия были созданы программы, способные сочинять классическую музыку разных жанров, решать проблемы клинической диагностики быстрее и увереннее врачей-стажеров, самостоятельно управлять автомобилями и делать патентоспособные изобретения. Появилась даже интеллектуальная система, выдававшая оригинальные шутки (не сказать, чтобы уровень был высок, но дети, как говорят, находили их забавными).

Однако методы, хорошо зарекомендовавшие себя при разработке тех первых, практически демонстрационных, образцов интеллектуальных систем, не удавалось применить в тех случаях, когда речь заходила о широком спектре проблем и более трудных задачах. Одна из причин заключалась в комбинаторном взрыве, то есть скачкообразном росте количества возможных вариантов, которые приходилось изучать с помощью средств, основанных на простейшем методе перебора. Этот метод хорошо себя проявил на примере несложных задач, но не подходил для чуть более трудных. Например, для решения теоремы с доказательством длиной в пять строк системе логического вывода с одним правилом и пятью аксиомами требовалось просто пронумеровать все 3125 возможных комбинаций и проверить, какая из них приведет к нужному заключению. Исчерпывающий поиск также работал для доказательств длиной в шесть или семь строк. Но поиск методом полного перебора возможных вариантов начинал пробуксовывать, когда проблема усложнялась. Время для решения теоремы с доказательством не в пять, а пятьдесят строк будет отнюдь не в десять раз больше: если использовать полный перебор, то потребуется проверить 5 ≈ 8,9 × 10 возможных последовательностей — вычислительно немыслимая задача даже для самого сверхмощного компьютера.

6