Безусловно, с моральной точки зрения было бы намного справедливее, если мы смогли бы легко добиваться подобных результатов, не заставляя страдать множество невинных существ. Но если имитационным моделям все-таки придется претерпевать бессмысленные страдания, то эту несправедливость мы попробуем возместить, сохранив их файлы, а много позже, при более благоприятных условиях — когда человечество обеспечит себе полную безопасность — запустить их снова. В каком-то смысле это возрождение будет напоминать религиозную идею загробной жизни с последующим воскрешением — вполне в духе теологической концепции, пытающейся примирить нашу бренную жизнь с существованием зла.
Один из ведущих специалистов в области обучения с подкреплением Ричард Саттон определяет этот вид обучения не с методологической точки зрения, а в категориях проблематики самого подхода: по его мнению, любой способ, пригодный для решения этой проблемы, является методом обучения с подкреплением [Sutton, Barto 1998, p. 4]. Напротив, наше обсуждение напрямую касается методов, в которых конечной целью агента является стремление получать максимальное совокупное вознаграждение (в том смысле, что «совокупное вознаграждение» представляет собой восприятие общей ценности всех видов поощрения). Например, решить проблему обучения с подкреплением возможно и таким образом: обучить агента с совершенно иными конечными целями имитировать в самых разных ситуациях поведение агента, стремящегося к максимизации вознаграждения, — в соответствии с мнением Саттона и такой прием допустимо считать «методом обучения с подкреплением», но только в этом случае он не приведет к возникновению эффекта самостимуляции. Однако замечание Саттона верно по отношению к большинству приемов, которые используют в своей практике специалисты в области обучения с подкреплением.
Даже если удастся каким-то образом создать машинный интеллект «человеческого типа», совсем не обязательно, что его конечные цели начнут напоминать конечные цели человека. Разве только условия воспитания цифрового дитя будут близки к условиям воспитания обычного ребенка. Не представляю, как это можно обеспечить, но предположим, кому-то удалось. И все равно результат не будет гарантирован, поскольку даже небольшая разница во врожденных способностях приведет к совершенно иным реакциям на события. Однако вполне допускаю, что в будущем для цифрового разума человеческого типа разработают более надежный механизм ценностного приращения (с использованием новых лекарственных препаратов, имплантатов или их цифровых эквивалентов).
Невольно возникает вопрос: почему мы, люди, похоже, никогда не пытаемся «отключить механизм», иногда вынуждающий нас изменять своей прежней системе ценностей? Видимо, роль играют многие факторы. Во-первых, человеческая система мотивации пока плохо описана в качестве алгоритма, отстраненно вычисляющего максимум функции полезности. Во-вторых, у нас может не быть подходящих средств видоизменять пути, которыми мы приобретаем ценности. В-третьих, у нас могут быть инструментальные причины (связанные, в частности, с социальными сигналами, о которых мы говорили в главе 7) иногда приобретать новые конечные цели, поскольку окружающие способны догадываться о наших намерениях, и тогда нам приходится в собственных интересах пересматривать свои цели. В-четвертых, встречаются моменты, когда мы действительно активно сопротивляемся чьему-то тлетворному влиянию, заставляющему нас пересмотреть свою систему ценностей. В-пятых, есть вероятный и довольно любопытный вариант: мы наделяем некоторыми конечными ценностями своего рода агента, способного приобретать новые конечные ценности обычным человеческим способом.
Или попытаться создать такую систему мотивации, чтобы ИИ был индифферентен к замене целей; см.: [Armstrong 2010].
Мы опираемся на объяснения, данные Дэниелом Дьюи [Dewey 2011]. Использованы также идеи из работ: [Hutter 2005; Legg 2008; Yudkowsky 2001; Hay 2005].
Чтобы избежать ненужного усложнения, мы остановимся на агентах с детерминированным поведением, которые не дисконтируют будущее вознаграждение.
С математической точки зрения поведение агента можно формализовать при помощи агентской функции, ставящей в соответствие каждой возможной истории взаимодействий свое действие. Явно задать агентскую функцию в табличном виде невозможно за исключением случаев самых простых агентов. Вместо этого агенту дается возможность вычислить, какое действие лучше выполнять. Поскольку способов вычисления одной и той же агентской функции может быть много, это ведет к индивидуализации агента в виде агентской программы. Агентская программа — это такая программа или алгоритм, которая вычисляет действие, соответствующее каждой истории взаимодействий. Хотя часто удобнее и полезнее — с математической точки зрения — считать, что агент взаимодействует с другими в некоторой формально определенной среде, важно помнить, что это является идеализацией. На реальных агентов действуют реальные физические стимулы. Это означает не только, что агент взаимодействует со средой посредством датчиков и исполнительных механизмов, но также, что «мозг» или контроллер агента сам является частью физической реальности. Поэтому на его поведение, в принципе, могут воздействовать физические помехи извне (а не только объекты восприятия, или перцепты, полученные с датчиков). То есть с какого-то момента становится необходимым считать агента реализацией агента. Реализация агента — это физическая структура, которая в отсутствие влияния среды выполняет агентскую функцию. (Определения даны в соответствии с работой Дэниела Дьюи [Dewey 2011].)