См.: [Holley 2009].
Кроме того, есть гибридные подходы, основанные как на статистике, так и на правилах, но в наше время они не представляют никакого интереса.
См.: [Cross, Walker 1994; Hedberg 2002].
Алгоритмический высокочастотный трейдинг, или алгоритмическая высокочастотная торговля (algorithmic high-frequency trading), — формализованный процесс совершения торговых операций на финансовых рынках по заданному алгоритму с использованием специализированных компьютерных систем (торговых роботов). (Прим. ред.)
По сообщенным мне в частном порядке статистическим данным TABB Group — компании, специализирующейся на анализе рынка капиталов; ее офисы находятся в Нью-Йорке и Лодоне.
См.: [CFTC/SEC Report on May 6, 2010]; другую точку зрения на события 6 мая 2010 года см.: [CME Group, 2010] (CFTC (Commodity Futures Trading Commission) — Комиссия по срочной биржевой торговле; SEC (Securities and Exchange Commission) — Комиссия по ценным бумагам и биржам; CME Group — Группа Чикагской товарной биржи, крупнейший североамериканский рынок ценных бумаг, созданный в результате объединения ведущих нью-йоркских и чикагских бирж. (Прим. ред.)).
Мне не хотелось бы, чтобы это воспринималось как аргумент против алгоритмического высокочастотного трейдинга, который вполне способен играть полезную роль, повышая ликвидность и эффективность рынка.
Менее масштабное потрясение случилось на фондовом рынке 1 августа 2012 года, отчасти причиной стало то обстоятельство, что автоматический прерыватель не был запрограммирован приостанавливать торги в случае резких изменений в количестве обращаемых акций, см.: [Popper 2012]. Это затрагивает еще одну нашу тему: трудно предусмотреть все возможные варианты, когда стандартная ситуация, которая держится на хорошо продуманных принципах, вдруг выходит из-под контроля.
См.: [Nilsson 2009, p. 319].
См.: [Minsky 2006; McCarthy 2007; Beal, Winston 2009].
По данным Питера Норвига (из личного общения). В принципе, любые курсы по информационным технологиям и машинному обучению очень популярны. Может быть, это объясняется неожиданно возросшим массовым интересом к аналитике больших данных (big data) — интересом, инициированным в свое время Google и весьма подогреваемым огромными призовыми суммами Netflix.
См.: [Armstrong, Sotala 2012].
См.: [Müller, Bostrom <В печати>].
См.: [Baum et al. 2011; Sandberg, Bostrom 2011].
См.: [Nilsson 2009].
Безусловно, и в этом случае сохранялось условие, что научная деятельность будет продолжаться «без серьезных сбоев», а в мире не случится никаких цивилизационных катастроф. В интервью Нильсон использовал следующее определение ИИЧУ: «ИИ, способный выполнять приблизительно 80% работы не хуже человека или даже лучше» [Kruel 2012].
В таблице показаны результаты четырех отдельных опросов, в последней строке даны средние показатели. Первые два опроса проводились среди участников нескольких научных конференций. PT-AI — конференция «Философия и теория ИИ» (Салоники, 2011); опрос состоялся в ноябре 2012 года; всего участников — 88 человек, количество респондентов — 43 человека. AGI — конференции «Универсальный искусственный интеллект» и «Универсальный искусственный интеллект — степень воздействия и угрозы» (Оксфорд, декабрь 2012); всего участников — 111 человек, количество респондентов — 72 человека. EETN — съезд Греческой ассоциации искусственного интеллекта (апрель, 2013); всего участников — 250 человек, количество респондентов — 26 человек. TOP100 — опрос ведущих специалистов по искусственному интеллекту в соответствии с индексом цитирования (май 2013); всего в списке — 100 человек, количество респондентов — 29 человек.
См.: [Kruel 2011] — в работе собраны интервью с 28 специалистами по ИИ и в смежных областях.
На диаграмме показаны перенормированные медианные оценки. Средние значения несколько отличаются. Например, средние значения для варианта «чрезвычайно негативное» были равны 7,6% (в Tоп-100) и 17,2% (в объединенной оценке по всем опросам).
В литературе встречается огромное количество подтверждений ненадежности прогнозов экспертов во многих областях, поэтому есть все основания полагать, что подобное положение истинно и для сферы изучения искусственного интеллекта. В частности, делающие прогнозы люди, как правило, слишком уверенные в своей правоте, считают себя более точными предсказателями, чем это есть на самом деле, и поэтому присваивают слишком низкую вероятность возможности, что их любимая гипотеза может оказаться ложной [Tetlock 2005]. (О других документально зафиксированных заблуждениях см., например: [Gilovich et al. 2002].) Однако неопределенность — неотъемлемая черта человеческой жизни, и многие наши действия неизбежно основаны на вероятностных прогнозах, то есть ожиданиях того, какие из возможных событий произойдут скорее всего. Отказ от более четко сформулированных вероятностных прогнозов не устранит эпистемологическую проблему, а лишь задвинет ее в тень [Bostrom 2007]. Вместо этого нашей реакцией на чрезмерную самонадеянность должны стать как расширение доверительных интервалов, или интервалов правдоподобия, так и борьба с собственными предубеждениями путем рассмотрения проблемы с различных точек зрения и тренировки интеллектуальной честности. В долгосрочной перспективе можно также работать над созданием методик, подходов к обучению и институтов, которые помогут нам достичь лучших проверочных образцов. См. также: [Armstrong, Sotala 2012].
Во-первых, этому определению сверхразума наиболее близка формулировка, опубликованная в работах: [Bostrom 2003 c; Bostrom 2006 a]; во-вторых, оно вполне отвечает формализованному условию Шейна Легга: «Интеллект оценивается способностью агента добиваться своей цели в широком диапазоне условий» [Legg 2008]; в-третьих, оно очень напоминает описание, сделанное Ирвингом Гудом, которое приведено нами в главе 1 настоящего издания: «Давайте определим сверхразумную машину как машину, которая в значительной степени превосходит интеллектуальные возможности любого умнейшего человека» [Good 1965, p. 33].