Искусственный интеллект. Этапы. Угрозы. Стратегии - Страница 106


К оглавлению

106

Один из подходов заключается в том, чтобы попробовать напрямую закодировать полное представление о конечной цели, которую программист назначил для ИИ; иными словами, нужно записать функцию полезности, применив метод точной спецификации. Этот подход мог бы сработать, если у нас была бы чрезвычайно простая цель, например мы хотели бы знать, сколько десятичных знаков после запятой стоит в числе пи. Еще раз: единственное, что нам понадобилось бы от ИИ, чтобы он рассчитал все знаки после запятой в числе пи. И нас не волновали бы никакие иные последствия достижения им этой цели (как мы помним, это проходило по категории пагубных отказов, тип — инфраструктурная избыточность). Было бы полезно при использовании метода точной спецификации выбрать еще метод приручения. Но если развиваемый ИИ должен стать сверхразумным монархом, а его конечной целью является следовать любым возможным человеческим ценностям, тогда метод точной спецификации, необходимый для полного определения цели, — безнадежно недостижимая задача.

Допустим, мы не можем загрузить в ИИ описание человеческих ценностей с помощью их полного представления на языке программирования — тогда что еще можно попробовать сделать? В этой главе мы обсудим несколько альтернативных путей. Какие-то из них на первый взгляд представляются вполне возможными, но при ближайшем рассмотрении оказываются гораздо менее выполнимыми. В дальнейшем имеет смысл обсуждать те пути, которые останутся открытыми.

Решение проблемы загрузки системы ценностей — задача, достойная усилий лучших представителей следующего поколения талантливых математиков. Мы не можем себе позволить откладывать решение этой проблемы до тех времен, когда усовершенствованный ИИ станет настолько разумным, что с легкостью раскусит наши намерения. Как мы уже знаем из раздела об инструментальной конвергенции (глава седьмая), он будет сопротивляться попыткам изменить его конечные цели. Если искусственный агент еще не стал абсолютной дружественным к моменту, когда обрел возможность размышлять о собственной агентской сущности, он вряд ли благосклонно отнесется к нашим планам по «промывке мозгов» или к заговору с целью заменить его на другого агента, отличающегося большим благорасположением к своим создателям и ближайшим соседям.

Естественный отбор

Эволюция уже один раз создала живое существо, наделенное системой ценностей. Этот неоспоримый факт может вдохновить на размышления, что проблему загрузки ценностей в ИИ можно решить эволюционными методами. Однако на этом пути — не столь безопасном, как кажется, — нас ожидают некоторые препятствия. Мы вспоминали о них в конце десятой главы, когда обсуждали, насколько опасными могут быть мощные поисковые процессы.

Эволюцию можно рассматривать в качестве отдельного класса поисковых алгоритмов, предполагающих двухэтапную настройку: на одном этапе — популяция возможных решений расширяется за счет новых кандидатов в соответствии с каким-то простым стохастическим правилом (например, случайной мутацией или половой рекомбинацией), на другом — популяция сокращается за счет отсева кандидатов, показывающих неудовлетворительные результаты тестирования при помощи оценочной функции. Как и в случае многих других типов мощного поиска, есть риск, что этот процесс отыщет решение, действительно удовлетворяющее формально определенному критерию поиска, но не отвечающее нашим моральным ожиданиям. (Это может случиться независимо от того, стремимся ли мы создать цифровой разум, имеющий такие же цели и ценности, как у среднестатистического человека, или, напротив, представляющий собой образец нравственности или идеал покорности.) Такого риска можно избежать, если не ограничиваться одноаспектным запросом на то, что мы хотим разработать, а постараться описать формальный критерий поиска, точно отражающий все измерения нашей цели. Но это уже оборачивается полновесной проблемой загрузки системы ценностей — и тогда нужно исходить из того, что она решена. В этом случае возникает следующая проблема, изложенная Ричардом Докинзом в книге «Река, текущая из рая»:

...

Общее количество страдания в мире в год превосходит все мыслимые пределы. За минуту, которая потребовалась мне для написания этого предложения, тысячи животных были съедены живьем; спасались от хищников бегством, скуля от страха; медленно погибали из-за пожирающих их изнутри паразитов; умирали от голода, жажды и болезней.

Даже если ограничиться одним нашим видом, то ежедневно погибает сто пятьдесят тысяч человек, и бесконечное количество людей страдает от всевозможных мучений и лишений. Может быть, природа и великий экспериментатор, но на свои опыты она никогда не получит одобрения у совета по этике, поскольку постоянно нарушает Хельсинкскую декларацию со всеми ее этическими нормами, причем с точек зрения и левых, и правых, и центристов. Важно другое: чтобы мы сами не шли слепо по пятам природы и не воспроизводили бездумно in silico все эти ужасы. Правда, вряд ли у нас получится совсем избежать проявлений преступной безнравственности, если мы собираемся создавать искусственный интеллект по образу и подобию человеческого разума, опираясь на эволюционные методы, — чтобы повторить хотя бы на минимальном уровне естественный процесс развития, называемый биологической эволюцией.


Обучение с подкреплением

Обучение с подкреплением — это область машинного обучения, в которой агенты могут учиться максимизировать накопленное вознаграждение. Формируя нужную среду, в которой поощряется любое желательное качество агента, можно создать агента, способного научиться решать широкий круг задач (даже в отсутствие подробной инструкции или обратной связи с программистами, но лишь бы присутствовал сигнал о поощрении). Часто алгоритм обучения с подкреплением включает в себя постепенное построение некоторой функции оценки, которая присваивает значение ценности состояниям, парам состояние–действие и различным стратегическим направлениям. (Например, программа может научиться играть в нарды, используя обучение с подкреплением для постепенного развития навыка оценки позиций на доске.) Можно считать, что эта функция оценки, постоянно меняющаяся с опытом, в том числе включает в себя и обучение нужным целям. Однако то, чему учится агент, это не новые конечные ценности, но все более точные оценки инструментальной ценности достижения определенных состояний (или совершения определенных действий в определенных состояниях, или следования определенной политике). Поскольку конечная цель остается величиной постоянной, мы всегда можем описать агента, проходящего обучение с подкреплением, как агента, имеющего конечную цель. Эта неизменная конечная цель агента — его стремление получать максимальное поощрение в будущем. Вознаграждение состоит из специально разработанных объектов восприятия, помещенных в его окружающую среду. Таким образом, в результате обучения с подкреплением у агента формируется устойчивый эффект самостимуляции (о котором подробно говорилось в главе восьмой), то есть агент начинает выстраивать собственную довольно сложную модель такого мира, который в состоянии предложить ему альтернативный вариант максимизации вознаграждения.

106